Design and Prototype Fabrication of a Neonatal Video Laryngoscope

> Katherine Baker and Joseph Ford University of California, San Diego Jacobs School of Engineering

Wade Rich and Neil Finer University of California, San Diego Medical Center

October 15, 2009

Dr. Neil Finer, Chief of the UCSD Medical Center's Division of Neonatology, and
 Wade Rich, Research Coordinator for the Division of Neonatology, approached
 the Photonic Systems Integration Lab with a collaboration proposal.

- 25,000 extremely low birth weight infants born annually,
- Most require intubation, a difficult / traumatic process for neonates
- Current instruments designed for adults, not infants, esp. not neonates.
- Project goal: Working model of a neonatal video laryngoscope.

Infant Intubation

85 - 90% of extremely low birth weight infants need intubation.

Intubation requires 3 (average) to 10 tries

Multiple attempts lead to serious risks.

Images from <u>Manual of Emergency Airway Management</u>, ed. Murphy and People's Daily Online PHOTONIC SYSTEMS INTEGRATION LABORATORY – UCSD JACOBS SCHOOL OF ENGINEERING

Laryngoscopes

UCSD Photonics

Traditional Laryngoscopes

Video Laryngoscopes

GlideScope: Video Camera

Karl Storz: Coherent Fiber Bundle

Our goal was to create a working model *neonatal* video laryngoscope to evaluate the feasibility of a commercial device.

Images are from Karl Storz website, GlideScope website

10/26/200

Blade and Device Constraints

Constraints

Blade Width

2.5mm by 6.5 mm tip

Variable Blade Angle
Image Quality

Combination of Imager and Lighting

Mechanical Properties

Strength
Heat
Texture

10/26/200

Imager Selection

Medigus

Medious

ffective Focal Length	.712 mm
ield of View	100°
-number	f/5.99

UCSD Photonic

We identified a promising camera in the Medigus IntroSpicio CCD Video Camera, with a camera head measuring only 1.8 by 1.8 by 12 mm.

Image from Medigus website PHOTONIC SYSTEMS INTEGRATION LABORATORY – UCSD JACOBS SCHOOL OF ENGINEERING

10/26/200

Design Solutions

With a necessary optical power of at least 30 to 40 mW, an LED at the tip would dissipate far too much heat.

We make use of a Fraen coupling lens.

The most elegant solution is a tapered acrylic light pipe acting as the blade.

UCSD Photoni

DETECTOR IMAGE: INCOHERENT IRRADIANCE FRI APR S 2007 DETECTOR 2, NSCC SURFACE 1: STZE 12.000 W X 12.000 H NILLIMETERS, PIXELS 200 W X 200 H, TOTAL MITS = 10639 PERK IRRADIANCE : 5.71066+0000 WITS/CM^2 TOTAL FILLER : 5.71066+0000 WITS/CM^2

Image from Fraen website

Calculated efficiency is just over 50%.

Waveguide Fabrication

Acrylic blanks are cut at the right aspect ratio.

The edges are sanded, then flame-polished with a hydrogen-oxygen torch.

Blanks are heated to pliability, then stretched to form a taper

10/26/200

Assembly and Optical Testing of Initial Model

10/26/200

Medical Testing and Feedback

13/83/00

10/26/200

10/26/200

- Neonate anatomy guided our design.
- We met all the constraints of the project.
- Less expensive wafer cameras could be used to reduce cost.
- We would need a sterilizable device to perform a clinical trial
- Further modifications could be made

Thank you

kabaker@ucsd.edu

10/26/200